skip to main content


Search for: All records

Creators/Authors contains: "Shan, Libo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available February 1, 2025
  3. Free, publicly-accessible full text available May 1, 2024
  4. 6:2 Fluorotelomer sulfonic acid (6:2 FTSA) is a dominant per- and poly-fluoroalkyl substance (PFAS) in aqueous film-forming foam (AFFF)-impacted soil. While its biotransformation mechanisms have been studied, the complex effects of plants, nutrients, and soil microbiome interactions on the fate and removal of 6:2 FTSA are poorly understood. This study systematically investigated the potential of phytoremediation for 6:2 FTSA by Arabidopsis thaliana coupled with bioaugmentation of Rhodococcus jostiiRHA1 (designated as RHA1 hereafter) under different nutrient and microbiome conditions. Hyperaccumulation of 6:2 FTSA, defined as tissue/soil concentration > 10 and high translocation factor > 3, was observed in plants. However, biotransformation of 6:2 FTSA only occurred under sulfur-limited conditions. Spiking RHA1 not only enhanced the biotransformation of 6:2 FTSA in soil but also promoted plant growth. Soil microbiome analysis uncovered Rhodococcus as one of the dominant species in all RHA1-spiked soil. Different nutrients such as sulfur and carbon, bioaugmentation, and amendment of 6:2 FTSA caused significant changes in - the microbial community structure. This study revealed the synergistic effects of phytoremediation and bioaugmentation on 6:2 FTSA removal. and highlighted that the fate of 6:2 FTSA was highly influenced by the complex interactions of plants, nutrients, and soil microbiome. 
    more » « less
  5. Abstract

    Plant pathogens use effector proteins to target host processes involved in pathogen perception, immune signalling, or defence outputs. Unlike foliar pathogens, it is poorly understood how root‐invading pathogens suppress immunity. The Avr2 effector from the tomato root‐ and xylem‐colonizing pathogenFusarium oxysporumsuppresses immune signalling induced by various pathogen‐associated molecular patterns (PAMPs). It is unknown how Avr2 targets the immune system. TransgenicAVR2 Arabidopsis thalianaphenocopies mutants in which the pattern recognition receptor (PRR) co‐receptor BRI1‐ASSOCIATED RECEPTOR KINASE (BAK1) or its downstream signalling kinase BOTRYTIS‐INDUCED KINASE 1 (BIK1) are knocked out. We therefore tested whether these kinases are Avr2 targets. Flg22‐induced complex formation of the PRR FLAGELLIN SENSITIVE 2 and BAK1 occurred in the presence and absence of Avr2, indicating that Avr2 does not affect BAK1 function or PRR complex formation. Bimolecular fluorescence complementation assays showed that Avr2 and BIK1 co‐localize in planta. Although Avr2 did not affect flg22‐induced BIK1 phosphorylation, mono‐ubiquitination was compromised. Furthermore, Avr2 affected BIK1 abundance and shifted its localization from nucleocytoplasmic to the cell periphery/plasma membrane. Together, these data imply that Avr2 may retain BIK1 at the plasma membrane, thereby suppressing its ability to activate immune signalling. Because mono‐ubiquitination of BIK1 is required for its internalization, interference with this process by Avr2 could provide a mechanistic explanation for the compromised BIK1 mobility upon flg22 treatment. The identification of BIK1 as an effector target of a root‐invading vascular pathogen identifies this kinase as a conserved signalling component for both root and shoot immunity.

     
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    Abstract Protein ubiquitylation profoundly expands proteome functionality and diversifies cellular signaling processes, with recent studies providing ample evidence for its importance to plant immunity. To gain a proteome-wide appreciation of ubiquitylome dynamics during immune recognition, we employed a two-step affinity enrichment protocol based on a 6His-tagged ubiquitin (Ub) variant coupled with high sensitivity mass spectrometry to identify Arabidopsis proteins rapidly ubiquitylated upon plant perception of the microbe-associated molecular pattern (MAMP) peptide flg22. The catalog from 2-week-old seedlings treated for 30 min with flg22 contained 690 conjugates, 64 Ub footprints, and all seven types of Ub linkages, and included previously uncharacterized conjugates of immune components. In vivo ubiquitylation assays confirmed modification of several candidates upon immune elicitation, and revealed distinct modification patterns and dynamics for key immune components, including poly- and monoubiquitylation, as well as induced or reduced levels of ubiquitylation. Gene ontology and network analyses of the collection also uncovered rapid modification of the Ub-proteasome system itself, suggesting a critical auto-regulatory loop necessary for an effective MAMP-triggered immune response and subsequent disease resistance. Included targets were UBIQUITIN-CONJUGATING ENZYME 13 (UBC13) and proteasome component REGULATORY PARTICLE NON-ATPASE SUBUNIT 8b (RPN8b), whose subsequent biochemical and genetic analyses implied negative roles in immune elicitation. Collectively, our proteomic analyses further strengthened the connection between ubiquitylation and flg22-based immune signaling, identified components and pathways regulating plant immunity, and increased the database of ubiquitylated substrates in plants. 
    more » « less